Search results for "Production yield"

showing 3 items of 3 documents

Resonant laser ionization of polonium at rilis-isolde for the study of ground- and isomer-state properties

2008

Three new ionization schemes for polonium have been tested with the resonant ionization laser ion source (RILIS) during the on-line production of 196Po in a UCx target at ISOLDE. The saturation of the atomic transitions has been observed and the yields of the isotope chain 193–198,200,202,204Po have been measured. This development provides the necessary groundwork for performing in-source resonant ionization spectroscopy on the neutron-deficient polonium isotopes (Z = 84). ispartof: Nuclear Instruments & Methods in Physics Research B vol:266 issue:19 pages:4403-4406 ispartof: location:FRANCE, Deauville status: published

PoloniumNuclear and High Energy Physicschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceslaw.inventionlawIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpectroscopyNuclear ExperimentInstrumentationPoloniumIsotope010308 nuclear & particles physicsOptical transitionSaturationLaserIon sourcechemistryOptical transitionProduction yieldLaser ionizationAlpha decay[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physics
researchProduct

The upgraded ISOLDE yield database – A new tool to predict beam intensities

2020

At the CERN-ISOLDE facility a variety of radioactive ion beams are available to users of the facility. The number of extractable isotopes estimated from yield database data exceeds 1000 and is still increasing. Due to high demand and scarcity of available beam time, precise experiment planning is required. The yield database stores information about radioactive beam yields and the combination of target material and ion source needed to extract a certain beam along with their respective operating conditions. It allows to investigate the feasibility of an experiment and the estimation of required beamtime. With the increasing demand for ever more exotic beams, needs arise to extend the functi…

Radioactive ion beamsNuclear and High Energy PhysicsYieldsComputer sciencecomputer.software_genre114 Physical sciences01 natural sciencesISOLDEDatabaseFLUKACERN0103 physical sciencesddc:530Production Yield010306 general physicsInstrumentationLarge Hadron ColliderDatabase010308 nuclear & particles physicsIn-target productionYield predictionCross sectionsYield (chemistry)ABRABLAIONIZATIONRelease efficiencycomputerRadioactive beamBeam (structure)Radioactive beamsNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay

2020

Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag+, Klebsiella oxytoca DSM 29614 produces biogenic Ag-NPs embedded in its peculiar exopolysaccharide (EPS). K. oxytoca DSM 29614 was cultivated in a defined growth medium–containing citrate (as sole carbon source) and supplemented with Ag+ and either low or high Fe(III) concentration. As inferred from elemental analysis, transmission and scanning electron microscopy, Fourier transform infrared spectrometry and dynamic light scattering, Ag-EPS NPs were produced in both conditions and contained also Fe. The production yield of high-Fe/Ag-EPS NPs was 12 times …

Nanoparticle production yieldNanoparticleBacterial exopolysaccharide; Biofilm formation inhibition; Biogenic bimetal nanoparticles; Nanoparticle production yield; Phycoerythrin fluorescence–based assay; Silver ion release;Biogenic bimetal nanoparticlesSettore BIO/19 - Microbiologia GeneraleApplied Microbiology and BiotechnologySilver nanoparticleNOBacterial exopolysaccharide; Biofilm formation inhibition; Biogenic bimetal nanoparticles; Nanoparticle production yield; Phycoerythrin fluorescence–based assay; Silver ion release03 medical and health scienceschemistry.chemical_compoundDynamic light scatteringBiofilm formation inhibitionPhycoerythrin fluorescence–based assay030304 developmental biology0303 health sciencesGrowth mediumbiology030306 microbiologySilver ion releaseBiofilmKlebsiella oxytocaGeneral Medicinebiology.organism_classificationFluorescenceBacterial exopolysaccharidechemistryYield (chemistry)BiotechnologyNuclear chemistry
researchProduct